资源类型

期刊论文 52

年份

2023 14

2022 6

2021 2

2020 2

2019 3

2018 5

2017 2

2016 1

2015 3

2014 4

2012 1

2011 2

2009 2

2008 2

2007 3

展开 ︾

关键词

亚麻屑纤维素 1

共热解 1

冷冻萃取 1

吸附 1

孔道结构 1

导电 1

改性 1

木聚糖 1

木质素 1

机械压力 1

机械性能 1

正渗透 1

活性翠蓝 1

相转化 1

真空干燥 1

离子液体 1

纤维素 1

纤维素膜 1

聚乙烯 1

展开 ︾

检索范围:

排序: 展示方式:

Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals

Songshan Jiang, Helen Daly, Huan Xiang, Ying Yan, Huiping Zhang, Christopher Hardacre, Xiaolei Fan

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 718-726 doi: 10.1007/s11705-019-1804-5

摘要: Microwave (MW) assisted catalyst-free hydrolysis of fibrous cellulose (FC, cellulolysis) at 200°C promoted a cellulose conversion of ca 37.2% and quantitative production of valuable C5/C6 sugars (e.g , glucose) and the according platform biochemicals (e.g , 5-hydroxymethylfurfural), corresponding to an overall selectivity of 96.5%. Conversely, conventional hydrothermal cellulolysis under similar conditions was not effective, even after 24 h, carbonising the FC. Based on the systematic study of MW-assisted cellulolysis, the specific interaction between water molecules and macroscopic FC under the MW irradiation was proposed, accounting for the interpretation of the experimental observation. The kinetic energy of water molecules under the MW irradiation facilitated the C C (in the non-hindered surface CH OH groups) and C O C bond breaking (inside the cellulose cavities) in FC, producing primary cellulolysis products of xylose, glucose and cellobiose.

关键词: microwave     fibrous cellulose     hydrolysis     sugars     mechanism    

The preparation, characterization, and catalytic performance of porous fibrous LaFeO

Zhifei Wu, Li Wang, Yixiao Hu, Hui Han, Xing Li, Ying Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 967-975 doi: 10.1007/s11705-020-1922-0

摘要: LaFeO perovskite with a porous fibrous structure was successfully synthesized using a sunflower seed shell as a template. To investigate the effects of this template, a sample was prepared without a template via the same procedure. Through various characterization techniques, such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, N adsorption-desorption analysis, X-ray photoelectron spectroscopy, oxygen temperature programed desorption, and hydrogen temperature programed reduction, the physiochemical properties of the samples were investigated. The results showed that the sample made with a template had a larger surface area and a larger amount of adsorbed oxygen, which further illustrated that the sunflower seed shell template had a significant impact on the physiochemical properties of the samples. Furthermore, we explored the catalytic activity for nitric oxide (NO) oxidation, and studied the factors affecting it, which highlighted its potential application in automobile exhausts.

关键词: NO oxidation     porous fibrous LaFeO3     sunflower seed shell    

Fibrous dysplasia involving the calvarium in children?

Chunquan CAI, Qian LI, Qingjiang ZHANG, Changhong SHEN

《医学前沿(英文)》 2009年 第3卷 第2期   页码 211-215 doi: 10.1007/s11684-009-0024-7

摘要: To gain a broader appreciation of the clinical presentation, operative treatment, and outcome of fibrous dysplasia involving the calvarium in children, we retrospectively reviewed a series of cases of fibrous dysplasia involving the calvarium (4 males and 2 females) with patients’ age ranging from 5 to 12 years old. The clinical manifestation, radiographic findings, surgical treatment, outcome and follow-up were evaluated on the basis of medical records. Fibrous dysplasia in the series was monostotic, involving frontal bone (2 cases), temporal bone (1 case), parietal bone (2 cases) and occipital bone (1 case). The patients most commonly presented with enlarging mass and cosmetic complaints. The treatment given, depending on clinical presentation, was simple biopsy with conservative follow-up (2 cases) to cranial resection (4 cases). All the cases were histopathologically confirmed as fibrous dysplasia. It was demonstrated thatfibrous dysplasia involving the calvarium is a typically benign but slowly progressive disorder of bone. Modern imaging modalities and histopathologic analysis have made diagnosis relatively straightforward. Surgery should be reserved for patients with functional impairment or cosmetic deformity. Because of the benign nature of the condition, the surgery itself should be contemplated with great caution in children.

关键词: fibrous dysplasia     calvarium     monostotic     child    

Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1096-1108 doi: 10.1007/s11705-023-2317-9

摘要: Derivatization has great potential for the high-value utilization of cellulose by enhancing its processability and functionality. However, due to the low reactivity of natural cellulose, it remains challenging to rapidly prepare cellulose derivatives with high degrees of substitution. The “cavitation effect” of ultrasound can reduce the particle size and crystalline index of cellulose, which provides a possible method for preparing cellulose derivatives. Herein, a feasible method was proposed for efficiently converting regenerated cellulose to cellulose oleate with the assistance of ultrasonic treatment. By adjusting the reaction conditions including ultrasonic intensity, feeding ratios of oleic acid, reaction time, and reaction solvent, a series of cellulose oleates with degrees of substitution ranging from 0.37 to 1.71 were synthesized. Additionally, the effects of different reaction conditions on the chemical structures, crystalline structures, and thermal behaviors were investigated thoroughly. Cellulose oleates with degrees of substitution exceeding 1.23 exhibited amorphous structures and thermoplasticity with glass transition temperatures at 159.8 to 172.6 °C. This study presented a sustainable and practicable method for effectively derivatizing cellulose.

关键词: regenerated cellulose     cellulose oleate     sonochemistry     degree of substitution     thermoplasticity    

Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1028-1037 doi: 10.1007/s11705-022-2251-2

摘要: Electrodes that combine energy storage with mechanical and photothermal performance are necessary for efficient development and use of flexible energy storage and conversion devices. In this study, the flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films were fabricated via a one-step “soak and polymerization” method. The dense sandwich structure and strong interfacial interaction endowed polypyrrole/cellulose nanofiber composite films with excellent flexibility, outstanding mechanical strength, and desired toughness. Interestingly, the polypyrrole/cellulose nanofiber composite film electrodes with quaternary amine functionalized cellulose nanofiber had the highest specific mass capacitance (392.90 F∙g–1) and specific areal capacitance (3.32 F∙cm–2) than the electrodes with unmodified and carboxyl functionalized cellulose nanofibers. Further, the polypyrrole/cellulose nanofiber composite films with sandwich structure had excellent photothermal conversion properties. This study demonstrated a feasible and versatile method for preparing of multifunctional composite films, having promising applications in various energy storage fields.

关键词: cellulose nanofiber     electrochemical     photothermal conversion     polypyrrole    

Paratesticular fibrous pseudotumor: a report of five cases and literature review

null

《医学前沿(英文)》 2014年 第8卷 第4期   页码 484-488 doi: 10.1007/s11684-014-0325-3

摘要:

Paratesticular fibrous pseudotumor is a rare benign tumor that originates from intrascrotal tissue, such as tunica vaginalis, epididymis, or spermatic cord. Five cases of fibrous pseudotumor in our hospital were reviewed retrospectively, and the clinical manifestations were analyzed. Three cases of unilateral nodules, comprising one case located in the tunica vaginalis and two cases located in the epididymis, underwent local excision of the unilateral nodule. Two cases of diffuse incrassation in the tunica vaginalis underwent right radical orchiectomy. Postoperative pathological examination showed that all were fibrous pseudotumors. An average follow-up of 26 months showed uneventful results without recurrence for all patients. Fibrous pseudotumor is not a neoplasm but a reactive fibrous inflammatory hyperplasia. Definitive diagnosis requires pathological examination. Radical orchiectomy should be avoided when possible, and local excision should be performed because of the lack of obvious evidence of potential malignancy.

关键词: fibroma     inflammation     scrotum     testicular neoplasm    

Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network

T. Chandra Sekhara REDDY

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 490-503 doi: 10.1007/s11709-017-0445-3

摘要: This paper is aimed at adapting Artificial Neural Networks (ANN) to predict the strength properties of SIFCON containing different minerals admixture. The investigations were done on 84 SIFCON mixes, and specimens were cast and tested after 28 days curing. The obtained experimental data are trained using ANN which consists of 4 input parameters like Percentage of fiber (PF), Aspect Ratio (AR), Type of admixture (TA) and Percentage of admixture (PA). The corresponding output parameters are compressive strength, tensile strength and flexural strength. The predicted values obtained using ANN show a good correlation between the experimental data. The performance of the 4-14-3 architecture was better than other architectures. It is concluded that ANN is a highly powerful tool suitable for assessing the strength characteristics of SIFCON.

关键词: artificial neural networks     root mean square error     SIFCON     silica fume     metakaolin     steel fiber    

Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1387-1398 doi: 10.1007/s11705-022-2154-2

摘要: UiO-66-NH2 is an efficient material for removing pollutants from wastewater due to its high specific surface area, high porosity and water stability. However, recycling them from wastewater is difficult. In this study, the cellulose nanofibers mat deacetylated from cellulose acetate nanofibers were used to combine with UiO-66-NH2 by the method of in-situ growth to remove the toxic dye, rose bengal. Compared to previous work, the prepared composite could not only provide ease of separation of UiO-66-NH2 from the water after adsorption but also demonstrate better adsorption capacity (683 mg∙g‒1 (T = 25 °C, pH = 3)) than that of the simple UiO-66-NH2 (309.6 mg∙g‒1 (T = 25 °C, pH = 3)). Through the analysis of adsorption kinetics and isotherms, the adsorption for rose bengal is mainly suitable for the pseudo-second-order kinetic model and Freundlich model. Furthermore, the relevant research revealed that the main adsorption mechanism of the composite was electrostatic interaction, hydrogen bonding and π–π interaction. Overall, the approach depicts an efficient model for integrating metal-organic frameworks on cellulose nanofibers to improve metal-organic framework recovery performance with potentially broad applications.

关键词: UiO-66-NH2     cellulose nanofibers     rose bengal     adsorption     mechanism    

Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

LU Yangcheng, WU Yingxin

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 204-208 doi: 10.1007/s11705-008-0027-y

摘要: To control the morphology of cellulose membranes used for separation, they were prepared by the NMMO method using water, methanol, ethanol and their binary solution as coagulation baths. Morphologies of the surface and cross section of dry membranes were observed. The pore structure parameters of wet membranes were determined. By comparison, the process and mechanism of pore formation in dry membranes were suggested, and the relativity of cellulose crystal size to average pore diameter in wet membranes and their influences were discussed. The results show that the morphology of dry membranes is clearly varied with coagulation baths, while the porosity of wet membranes is almost constant. Porous structures can appear in the compact region of dry membranes due to swelling from water. These pores have a virtual effect on the average pore diameter of wet membranes. By changing the composition of coagulation baths, the microstructure of cellulose membranes in a dry or wet environment can be adjusted separately.

关键词: comparison     NMMO     constant     diameter     process    

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1010-1027 doi: 10.1007/s11705-023-2307-y

摘要: Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

关键词: cellulose     paper electrodes     Li-ion batteries     high energy density    

Bioinspired cellulose-based membranes in oily wastewater treatment

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1515-2

摘要:

• Cellulose-based membrane separates oily wastewater mimicking the living things.

关键词: Cellulose     Bioinspired membrane     Superhydrophobic surface     Underwater superoleophobic surface     Oil-water separation    

Research progress on low dielectric constant modification of cellulose insulating paper for power transformers

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 991-1009 doi: 10.1007/s11705-022-2259-7

摘要: Because of the increase in the transmission voltage levels, the demand for insulation reliability of power transformers has increasingly become critical. Cellulose insulating paper is the main insulating component of power transformers. To improve the insulation level of ultrahigh voltage transformers and reduce their weight and size, reducing the dielectric constant of oil-immersed cellulose insulating paper is highly desired. Cellulose is used to produce power-transformer insulating papers owing to its excellent electrical properties, renewability, biodegradability and abundance. The dielectric constant of a cellulose insulating paper can be effectively reduced by chemical or physical modification. This study presents an overview of the foreign and domestic research status of the use of modification technology to reduce the dielectric constant of cellulose insulating papers. All the mentioned methods are analyzed in this study. Finally, some recommendations for future modified cellulose insulating paper research and applications are proposed. This paper can provide a reference for further research on low dielectric constant cellulose insulating paper in the future.

关键词: low dielectric constant     chemical and physical modification     cellulose insulating paper     transformer     nanomaterials.    

Nano-copper ions assembled cellulose-based composite with antibacterial activity for biodegradable personal

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1544-1554 doi: 10.1007/s11705-022-2288-2

摘要: The current SARS-CoV-2 pandemic has resulted in the widespread use of personal protective equipment, particularly face masks. However, the use of commercial disposable face masks puts great pressure on the environment. In this study, nano-copper ions assembled cotton fabric used in face masks to impart antibacterial activity has been discussed. To produce the nanocomposite, the cotton fabric was modified by sodium chloroacetate after its mercerization, and assembled with bactericidal nano-copper ions (about 10.61 mg·g–1) through electrostatic adsorption. It demonstrated excellent antibacterial activity against Staphylococcus aureus and Escherichia coli because the gaps between fibers in the cotton fabric allow the nano-copper ions to be fully released. Moreover, the antibacterial efficiency was maintained even after 50 washing cycles. Furthermore, the face mask constructed with this novel nanocomposite upper layer exhibited a high particle filtration efficiency (96.08% ± 0.91%) without compromising the air permeability (28.9 min·L–1). This green, economical, facile, and scalable process of depositing nano-copper ions onto modified cotton fibric has great potential to reduce disease transmission, resource consumption, and environmental impact of waste, while also expanding the range of protective fabrics.

关键词: cellulose-based     nanocomposite     biodegradable antibacterial fabric     nano-copper ions     face masks    

Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1568-x

摘要:

● A composite aerogel was simply obtained to remove various fluoroquinolones (FQs).

关键词: Composite aerogel of carboxymethyl cellulose and κ-carrageenan     Fluoroquinolone antibiotics     Adsorption performance     Coexisting substances     Adsorption mechanism     Reusability    

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 853-866 doi: 10.1007/s11705-022-2256-x

摘要: The discharge of large amounts of dye-containing wastewater seriously threats the environment. Adsorbents have been adopted to remove these dyes present in the wastewater. However, the high adsorption capacity, predominant pH-responsibility, and excellent recyclability are three challenges to the development of efficient adsorbents. The poly(acryloxyethyl trimethylammonium chloride)-graft-dialdehyde cellulose nanocrystals were synthesized in our work. Subsequently, the cationic dialdehyde cellulose nanocrystal cross-linked chitosan nanocomposite foam was fabricated via freeze-drying of the hydrogel. Under the optimal ratio of the cationic dialdehyde cellulose nanocrystal/chitosan (w/w) of 12/100, the resultant foam (Foam-12) possesses excellent absorption properties, such as high porosity, high content of active sites, strong acid resistance, and high amorphous region. Then, Foam-12 was applied as an eco-friendly adsorbent to remove acid red 134 (a representative of anionic dyes) from aqueous solutions. The maximum dye adsorption capacity of 1238.1 mg∙g‒1 is achieved under the conditions of 20 mg∙L‒1 adsorbents, 100 mg∙L‒1 dye, pH 3.5, 24 h, and 25 °C. The dominant adsorption mechanism for the anionic dye adsorption is electrostatic attraction, and Foam-12 can effectively adsorb acid red 134 at pH 2.5–5.5 and be desorbed at pH 8. Its easy recovery and good reusability are verified by the repeated acid adsorption–alkaline desorption experiments.

关键词: chitosan foam     cellulose nanocrystals     acid red 134     adsorption    

标题 作者 时间 类型 操作

Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals

Songshan Jiang, Helen Daly, Huan Xiang, Ying Yan, Huiping Zhang, Christopher Hardacre, Xiaolei Fan

期刊论文

The preparation, characterization, and catalytic performance of porous fibrous LaFeO

Zhifei Wu, Li Wang, Yixiao Hu, Hui Han, Xing Li, Ying Wang

期刊论文

Fibrous dysplasia involving the calvarium in children?

Chunquan CAI, Qian LI, Qingjiang ZHANG, Changhong SHEN

期刊论文

Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry

期刊论文

Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding

期刊论文

Paratesticular fibrous pseudotumor: a report of five cases and literature review

null

期刊论文

Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network

T. Chandra Sekhara REDDY

期刊论文

Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption

期刊论文

Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

LU Yangcheng, WU Yingxin

期刊论文

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

期刊论文

Bioinspired cellulose-based membranes in oily wastewater treatment

期刊论文

Research progress on low dielectric constant modification of cellulose insulating paper for power transformers

期刊论文

Nano-copper ions assembled cellulose-based composite with antibacterial activity for biodegradable personal

期刊论文

Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance

期刊论文

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

期刊论文